3.516 \(\int \frac{(c+d x+e x^2+f x^3) (a+b x^4)^{3/2}}{x^2} \, dx\)

Optimal. Leaf size=404 \[ \frac{2 a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (5 \sqrt{a} e+21 \sqrt{b} c\right ) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{35 \sqrt [4]{b} \sqrt{a+b x^4}}-\frac{12 a^{5/4} \sqrt [4]{b} c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a+b x^4}}-\frac{1}{2} a^{3/2} d \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )+\frac{3 a^2 f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{16 \sqrt{b}}-\frac{\left (a+b x^4\right )^{3/2} \left (7 c-e x^2\right )}{7 x}+\frac{2}{35} x \sqrt{a+b x^4} \left (5 a e+21 b c x^2\right )+\frac{12 a \sqrt{b} c x \sqrt{a+b x^4}}{5 \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{1}{16} a \sqrt{a+b x^4} \left (8 d+3 f x^2\right )+\frac{1}{24} \left (a+b x^4\right )^{3/2} \left (4 d+3 f x^2\right ) \]

[Out]

(12*a*Sqrt[b]*c*x*Sqrt[a + b*x^4])/(5*(Sqrt[a] + Sqrt[b]*x^2)) + (2*x*(5*a*e + 21*b*c*x^2)*Sqrt[a + b*x^4])/35
 + (a*(8*d + 3*f*x^2)*Sqrt[a + b*x^4])/16 - ((7*c - e*x^2)*(a + b*x^4)^(3/2))/(7*x) + ((4*d + 3*f*x^2)*(a + b*
x^4)^(3/2))/24 + (3*a^2*f*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(16*Sqrt[b]) - (a^(3/2)*d*ArcTanh[Sqrt[a + b
*x^4]/Sqrt[a]])/2 - (12*a^(5/4)*b^(1/4)*c*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*
EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*Sqrt[a + b*x^4]) + (2*a^(5/4)*(21*Sqrt[b]*c + 5*Sqrt[a]*e)*(
Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/
2])/(35*b^(1/4)*Sqrt[a + b*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.348052, antiderivative size = 404, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 14, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.467, Rules used = {1833, 1272, 1177, 1198, 220, 1196, 1252, 815, 844, 217, 206, 266, 63, 208} \[ \frac{2 a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (5 \sqrt{a} e+21 \sqrt{b} c\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{35 \sqrt [4]{b} \sqrt{a+b x^4}}-\frac{12 a^{5/4} \sqrt [4]{b} c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a+b x^4}}-\frac{1}{2} a^{3/2} d \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )+\frac{3 a^2 f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{16 \sqrt{b}}-\frac{\left (a+b x^4\right )^{3/2} \left (7 c-e x^2\right )}{7 x}+\frac{2}{35} x \sqrt{a+b x^4} \left (5 a e+21 b c x^2\right )+\frac{12 a \sqrt{b} c x \sqrt{a+b x^4}}{5 \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{1}{16} a \sqrt{a+b x^4} \left (8 d+3 f x^2\right )+\frac{1}{24} \left (a+b x^4\right )^{3/2} \left (4 d+3 f x^2\right ) \]

Antiderivative was successfully verified.

[In]

Int[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^2,x]

[Out]

(12*a*Sqrt[b]*c*x*Sqrt[a + b*x^4])/(5*(Sqrt[a] + Sqrt[b]*x^2)) + (2*x*(5*a*e + 21*b*c*x^2)*Sqrt[a + b*x^4])/35
 + (a*(8*d + 3*f*x^2)*Sqrt[a + b*x^4])/16 - ((7*c - e*x^2)*(a + b*x^4)^(3/2))/(7*x) + ((4*d + 3*f*x^2)*(a + b*
x^4)^(3/2))/24 + (3*a^2*f*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(16*Sqrt[b]) - (a^(3/2)*d*ArcTanh[Sqrt[a + b
*x^4]/Sqrt[a]])/2 - (12*a^(5/4)*b^(1/4)*c*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*
EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*Sqrt[a + b*x^4]) + (2*a^(5/4)*(21*Sqrt[b]*c + 5*Sqrt[a]*e)*(
Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/
2])/(35*b^(1/4)*Sqrt[a + b*x^4])

Rule 1833

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[
Sum[((c*x)^(m + j)*Sum[Coeff[Pq, x, j + (k*n)/2]*x^((k*n)/2), {k, 0, (2*(q - j))/n + 1}]*(a + b*x^n)^p)/c^j, {
j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rule 1272

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[((f*x)^(m + 1)*(a
+ c*x^4)^p*(d*(m + 4*p + 3) + e*(m + 1)*x^2))/(f*(m + 1)*(m + 4*p + 3)), x] + Dist[(4*p)/(f^2*(m + 1)*(m + 4*p
 + 3)), Int[(f*x)^(m + 2)*(a + c*x^4)^(p - 1)*(a*e*(m + 1) - c*d*(m + 4*p + 3)*x^2), x], x] /; FreeQ[{a, c, d,
 e, f}, x] && GtQ[p, 0] && LtQ[m, -1] && m + 4*p + 3 != 0 && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1177

Int[((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(d*(4*p + 3) + e*(4*p + 1)*x^2)*(a
+ c*x^4)^p)/((4*p + 1)*(4*p + 3)), x] + Dist[(2*p)/((4*p + 1)*(4*p + 3)), Int[Simp[2*a*d*(4*p + 3) + (2*a*e*(4
*p + 1))*x^2, x]*(a + c*x^4)^(p - 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] &
& FractionQ[p] && IntegerQ[2*p]

Rule 1198

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1252

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m
 - 1)/2)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && IntegerQ[(m + 1)/2]

Rule 815

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(
m + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*(a + c*x^2)^p)/(c*e^2*(m + 2*p + 1)*(m
+ 2*p + 2)), x] + Dist[(2*p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^2} \, dx &=\int \left (\frac{\left (c+e x^2\right ) \left (a+b x^4\right )^{3/2}}{x^2}+\frac{\left (d+f x^2\right ) \left (a+b x^4\right )^{3/2}}{x}\right ) \, dx\\ &=\int \frac{\left (c+e x^2\right ) \left (a+b x^4\right )^{3/2}}{x^2} \, dx+\int \frac{\left (d+f x^2\right ) \left (a+b x^4\right )^{3/2}}{x} \, dx\\ &=-\frac{\left (7 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}+\frac{1}{2} \operatorname{Subst}\left (\int \frac{(d+f x) \left (a+b x^2\right )^{3/2}}{x} \, dx,x,x^2\right )-\frac{6}{7} \int \left (-a e-7 b c x^2\right ) \sqrt{a+b x^4} \, dx\\ &=\frac{2}{35} x \left (5 a e+21 b c x^2\right ) \sqrt{a+b x^4}-\frac{\left (7 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}+\frac{1}{24} \left (4 d+3 f x^2\right ) \left (a+b x^4\right )^{3/2}-\frac{2}{35} \int \frac{-10 a^2 e-42 a b c x^2}{\sqrt{a+b x^4}} \, dx+\frac{\operatorname{Subst}\left (\int \frac{(4 a b d+3 a b f x) \sqrt{a+b x^2}}{x} \, dx,x,x^2\right )}{8 b}\\ &=\frac{2}{35} x \left (5 a e+21 b c x^2\right ) \sqrt{a+b x^4}+\frac{1}{16} a \left (8 d+3 f x^2\right ) \sqrt{a+b x^4}-\frac{\left (7 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}+\frac{1}{24} \left (4 d+3 f x^2\right ) \left (a+b x^4\right )^{3/2}+\frac{\operatorname{Subst}\left (\int \frac{8 a^2 b^2 d+3 a^2 b^2 f x}{x \sqrt{a+b x^2}} \, dx,x,x^2\right )}{16 b^2}-\frac{1}{5} \left (12 a^{3/2} \sqrt{b} c\right ) \int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a}}}{\sqrt{a+b x^4}} \, dx+\frac{1}{35} \left (4 a^{3/2} \left (21 \sqrt{b} c+5 \sqrt{a} e\right )\right ) \int \frac{1}{\sqrt{a+b x^4}} \, dx\\ &=\frac{12 a \sqrt{b} c x \sqrt{a+b x^4}}{5 \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{2}{35} x \left (5 a e+21 b c x^2\right ) \sqrt{a+b x^4}+\frac{1}{16} a \left (8 d+3 f x^2\right ) \sqrt{a+b x^4}-\frac{\left (7 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}+\frac{1}{24} \left (4 d+3 f x^2\right ) \left (a+b x^4\right )^{3/2}-\frac{12 a^{5/4} \sqrt [4]{b} c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a+b x^4}}+\frac{2 a^{5/4} \left (21 \sqrt{b} c+5 \sqrt{a} e\right ) \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{35 \sqrt [4]{b} \sqrt{a+b x^4}}+\frac{1}{2} \left (a^2 d\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x^2}} \, dx,x,x^2\right )+\frac{1}{16} \left (3 a^2 f\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,x^2\right )\\ &=\frac{12 a \sqrt{b} c x \sqrt{a+b x^4}}{5 \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{2}{35} x \left (5 a e+21 b c x^2\right ) \sqrt{a+b x^4}+\frac{1}{16} a \left (8 d+3 f x^2\right ) \sqrt{a+b x^4}-\frac{\left (7 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}+\frac{1}{24} \left (4 d+3 f x^2\right ) \left (a+b x^4\right )^{3/2}-\frac{12 a^{5/4} \sqrt [4]{b} c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a+b x^4}}+\frac{2 a^{5/4} \left (21 \sqrt{b} c+5 \sqrt{a} e\right ) \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{35 \sqrt [4]{b} \sqrt{a+b x^4}}+\frac{1}{4} \left (a^2 d\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,x^4\right )+\frac{1}{16} \left (3 a^2 f\right ) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x^2}{\sqrt{a+b x^4}}\right )\\ &=\frac{12 a \sqrt{b} c x \sqrt{a+b x^4}}{5 \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{2}{35} x \left (5 a e+21 b c x^2\right ) \sqrt{a+b x^4}+\frac{1}{16} a \left (8 d+3 f x^2\right ) \sqrt{a+b x^4}-\frac{\left (7 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}+\frac{1}{24} \left (4 d+3 f x^2\right ) \left (a+b x^4\right )^{3/2}+\frac{3 a^2 f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{16 \sqrt{b}}-\frac{12 a^{5/4} \sqrt [4]{b} c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a+b x^4}}+\frac{2 a^{5/4} \left (21 \sqrt{b} c+5 \sqrt{a} e\right ) \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{35 \sqrt [4]{b} \sqrt{a+b x^4}}+\frac{\left (a^2 d\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b x^4}\right )}{2 b}\\ &=\frac{12 a \sqrt{b} c x \sqrt{a+b x^4}}{5 \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{2}{35} x \left (5 a e+21 b c x^2\right ) \sqrt{a+b x^4}+\frac{1}{16} a \left (8 d+3 f x^2\right ) \sqrt{a+b x^4}-\frac{\left (7 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}+\frac{1}{24} \left (4 d+3 f x^2\right ) \left (a+b x^4\right )^{3/2}+\frac{3 a^2 f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{16 \sqrt{b}}-\frac{1}{2} a^{3/2} d \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )-\frac{12 a^{5/4} \sqrt [4]{b} c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a+b x^4}}+\frac{2 a^{5/4} \left (21 \sqrt{b} c+5 \sqrt{a} e\right ) \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{35 \sqrt [4]{b} \sqrt{a+b x^4}}\\ \end{align*}

Mathematica [C]  time = 0.523102, size = 222, normalized size = 0.55 \[ \frac{1}{6} d \left (\sqrt{a+b x^4} \left (4 a+b x^4\right )-3 a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )\right )+\frac{1}{16} f \sqrt{a+b x^4} \left (\frac{3 a^{3/2} \sinh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{\sqrt{b} \sqrt{\frac{b x^4}{a}+1}}+5 a x^2+2 b x^6\right )-\frac{a c \sqrt{a+b x^4} \, _2F_1\left (-\frac{3}{2},-\frac{1}{4};\frac{3}{4};-\frac{b x^4}{a}\right )}{x \sqrt{\frac{b x^4}{a}+1}}+\frac{a e x \sqrt{a+b x^4} \, _2F_1\left (-\frac{3}{2},\frac{1}{4};\frac{5}{4};-\frac{b x^4}{a}\right )}{\sqrt{\frac{b x^4}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^2,x]

[Out]

(f*Sqrt[a + b*x^4]*(5*a*x^2 + 2*b*x^6 + (3*a^(3/2)*ArcSinh[(Sqrt[b]*x^2)/Sqrt[a]])/(Sqrt[b]*Sqrt[1 + (b*x^4)/a
])))/16 + (d*(Sqrt[a + b*x^4]*(4*a + b*x^4) - 3*a^(3/2)*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]]))/6 - (a*c*Sqrt[a + b
*x^4]*Hypergeometric2F1[-3/2, -1/4, 3/4, -((b*x^4)/a)])/(x*Sqrt[1 + (b*x^4)/a]) + (a*e*x*Sqrt[a + b*x^4]*Hyper
geometric2F1[-3/2, 1/4, 5/4, -((b*x^4)/a)])/Sqrt[1 + (b*x^4)/a]

________________________________________________________________________________________

Maple [C]  time = 0.013, size = 411, normalized size = 1. \begin{align*}{\frac{bf{x}^{6}}{8}\sqrt{b{x}^{4}+a}}+{\frac{5\,af{x}^{2}}{16}\sqrt{b{x}^{4}+a}}+{\frac{3\,f{a}^{2}}{16}\ln \left ({x}^{2}\sqrt{b}+\sqrt{b{x}^{4}+a} \right ){\frac{1}{\sqrt{b}}}}+{\frac{be{x}^{5}}{7}\sqrt{b{x}^{4}+a}}+{\frac{3\,aex}{7}\sqrt{b{x}^{4}+a}}+{\frac{4\,{a}^{2}e}{7}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{bd{x}^{4}}{6}\sqrt{b{x}^{4}+a}}+{\frac{2\,ad}{3}\sqrt{b{x}^{4}+a}}-{\frac{d}{2}{a}^{{\frac{3}{2}}}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+2\,\sqrt{a}\sqrt{b{x}^{4}+a} \right ) } \right ) }-{\frac{ac}{x}\sqrt{b{x}^{4}+a}}+{\frac{bc{x}^{3}}{5}\sqrt{b{x}^{4}+a}}+{{\frac{12\,i}{5}}c{a}^{{\frac{3}{2}}}\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{{\frac{12\,i}{5}}c{a}^{{\frac{3}{2}}}\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^2,x)

[Out]

1/8*f*b*x^6*(b*x^4+a)^(1/2)+5/16*f*a*x^2*(b*x^4+a)^(1/2)+3/16*f*a^2*ln(x^2*b^(1/2)+(b*x^4+a)^(1/2))/b^(1/2)+1/
7*e*b*x^5*(b*x^4+a)^(1/2)+3/7*e*a*x*(b*x^4+a)^(1/2)+4/7*e*a^2/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x
^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/6*d*b*x^4
*(b*x^4+a)^(1/2)+2/3*d*a*(b*x^4+a)^(1/2)-1/2*d*a^(3/2)*ln((2*a+2*a^(1/2)*(b*x^4+a)^(1/2))/x^2)-c*a*(b*x^4+a)^(
1/2)/x+1/5*c*b*x^3*(b*x^4+a)^(1/2)+12/5*I*c*a^(3/2)*b^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2
)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-12/5*I*c*a^(3
/2)*b^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a
)^(1/2)*EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{4} + a\right )}^{\frac{3}{2}}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^2,x, algorithm="maxima")

[Out]

integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b f x^{7} + b e x^{6} + b d x^{5} + b c x^{4} + a f x^{3} + a e x^{2} + a d x + a c\right )} \sqrt{b x^{4} + a}}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^2,x, algorithm="fricas")

[Out]

integral((b*f*x^7 + b*e*x^6 + b*d*x^5 + b*c*x^4 + a*f*x^3 + a*e*x^2 + a*d*x + a*c)*sqrt(b*x^4 + a)/x^2, x)

________________________________________________________________________________________

Sympy [A]  time = 11.26, size = 406, normalized size = 1. \begin{align*} \frac{a^{\frac{3}{2}} c \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - \frac{1}{4} \\ \frac{3}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac{3}{4}\right )} - \frac{a^{\frac{3}{2}} d \operatorname{asinh}{\left (\frac{\sqrt{a}}{\sqrt{b} x^{2}} \right )}}{2} + \frac{a^{\frac{3}{2}} e x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac{5}{4}\right )} + \frac{a^{\frac{3}{2}} f x^{2} \sqrt{1 + \frac{b x^{4}}{a}}}{4} + \frac{a^{\frac{3}{2}} f x^{2}}{16 \sqrt{1 + \frac{b x^{4}}{a}}} + \frac{\sqrt{a} b c x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac{7}{4}\right )} + \frac{\sqrt{a} b e x^{5} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{5}{4} \\ \frac{9}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac{9}{4}\right )} + \frac{3 \sqrt{a} b f x^{6}}{16 \sqrt{1 + \frac{b x^{4}}{a}}} + \frac{a^{2} d}{2 \sqrt{b} x^{2} \sqrt{\frac{a}{b x^{4}} + 1}} + \frac{3 a^{2} f \operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{16 \sqrt{b}} + \frac{a \sqrt{b} d x^{2}}{2 \sqrt{\frac{a}{b x^{4}} + 1}} + b d \left (\begin{cases} \frac{\sqrt{a} x^{4}}{4} & \text{for}\: b = 0 \\\frac{\left (a + b x^{4}\right )^{\frac{3}{2}}}{6 b} & \text{otherwise} \end{cases}\right ) + \frac{b^{2} f x^{10}}{8 \sqrt{a} \sqrt{1 + \frac{b x^{4}}{a}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(3/2)/x**2,x)

[Out]

a**(3/2)*c*gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x*gamma(3/4)) - a**(3/2)*d*asi
nh(sqrt(a)/(sqrt(b)*x**2))/2 + a**(3/2)*e*x*gamma(1/4)*hyper((-1/2, 1/4), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4
*gamma(5/4)) + a**(3/2)*f*x**2*sqrt(1 + b*x**4/a)/4 + a**(3/2)*f*x**2/(16*sqrt(1 + b*x**4/a)) + sqrt(a)*b*c*x*
*3*gamma(3/4)*hyper((-1/2, 3/4), (7/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamma(7/4)) + sqrt(a)*b*e*x**5*gamma(5/4
)*hyper((-1/2, 5/4), (9/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamma(9/4)) + 3*sqrt(a)*b*f*x**6/(16*sqrt(1 + b*x**4
/a)) + a**2*d/(2*sqrt(b)*x**2*sqrt(a/(b*x**4) + 1)) + 3*a**2*f*asinh(sqrt(b)*x**2/sqrt(a))/(16*sqrt(b)) + a*sq
rt(b)*d*x**2/(2*sqrt(a/(b*x**4) + 1)) + b*d*Piecewise((sqrt(a)*x**4/4, Eq(b, 0)), ((a + b*x**4)**(3/2)/(6*b),
True)) + b**2*f*x**10/(8*sqrt(a)*sqrt(1 + b*x**4/a))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{4} + a\right )}^{\frac{3}{2}}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^2,x, algorithm="giac")

[Out]

integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^2, x)